Q.6

i.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Explain the working of CMOS inverter with proper diagram. 3

7

- ii. Explain the working of TTL Tristate logic with neat and clean diagram.
- OR iii. What are the constraints in interfacing TTL with CMOS and 7 vice-versa? Explain with suitable diagrams.

Faculty of Engineering End Sem (Odd) Examination Dec-2017 CS3ES10 / EC3CO07 / EI3CO07 / IT3ES10 Digital Electronics / Digital Circuit & Systems Branch/Specialisation: CS/EC/EI/IT Programme: B.Tech. **Maximum Marks: 60**

Duration: 3 Hrs.

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Which is the decimal equivalent of largest possible 16 bit binary Q.1 i. 1 number? (a) 65536 (b) 65535 (c) 32768 (d) 32767
 - What should be the Boolean expression for L in Figure 1? ii. 1

- Statement 1: Mealy machine reacts faster to inputs. 1 vi. Statement 2: Moore machine has more circuit delays. Choose the correct option: (a) Both statements are true (b) Statement 1 is true but Statement 2 is false (c) Statement 1 is false and Statement 2 is true (d) Both statements are false vii. A Programmable Logic Array consists of 1 (a) Programmable AND array and fixed OR array (b) Fixed AND array and programmable OR array (c) Programmable AND array and programmable OR array (d) None of these. viii. If a RAM chip has 12 address input lines then it can access 1 memory locations up to. (a) 1k (b) 2k (c) 3k (d) 4k To drive capacitive loads a TTL circuit is modified to have. 1 ix. (a) Active pull-down element (b) Active pull-up element (c) Both the elements (d) None of these Which of the following logic family has least power 1 X. consumption? (a) DTL (b) TTL (c) RTL (d) CMOS Q.2 i. A logic circuit implements the following Boolean function. 3
 - $f(w, x, y, z) = \overline{w} y + w \overline{y} \overline{z}$

It is found that the circuit input combination w = y = 1 can never occur. Find a simpler expression for *f* using proper don't care conditions.

ii. Use K-map to expand the following switching function to 7 canonical SOP form.

$$F(A, B, C) = (\overline{A} + B)(A + B + \overline{C})(\overline{A} + C)$$

OR iii. Use Quine-McCluskey method to minimize the following 7 function.

$$f(w, x, y, z) = \sum m(1, 4, 7, 10, 13) + d(5, 14, 15)$$

[3]

- Q.3 i. Differentiate between Multiplexer and Demultiplexer. 2
 - ii. For the timing diagram shown in Figure 2, find both a minimum **8** NAND and a minimum NOR realization of function f(A, B, C). Use DeMorgan's theorem to show proper Boolean expressions

utilized to make such realization.

OR iii. Explain and design a BCD to Excess-3 code converter with its **8** block diagram, truth table, expressions and logic diagram.

Q.4 Attempt any two:

- i. How S-R flip flop can be converted into J-K flip flop? Explain 5with the help of excitation table, expressions and logic diagram.
- ii. Design a MOD-3 synchronous up counter with the help of state 5 diagram, excitation table, Boolean expressions and logic circuit.
- With the help of state diagram, present-next state table 5 expressions and logic diagram design a sequence detector circuit that produces an output '1' whenever an overlapping sequence 101 occurs.
- Q.5 i. Differentiate between SRAM and DRAM. 4
 - ii. Explain Read Only Memory. Implement the 3-input functions **6** $f_0 = \sum m(0,2,5,7), \quad f_1 = \sum m(1,3,4,6) \text{ and } f_2 = \sum m(3,4,5) \text{ using a ROM.}$
- OR iii. Explain PAL with a suitable example. What is its drawback over **6** PLA?

P.T.O.

CS3ES10 / EC3CO07 / EI3CO07 / IT3ES10 Digital Electronics / Digital Circuit & Systems Marking Scheme

Q.1	i.	Which is the decimal equivalent of largest possible 16 bit binary number?	1
	ii.	What should be the Boolean expression for L in Figure 1?	1
		(d) $(W + X) \bullet Y \bullet \overline{Z}$	
	iii.	Economically how many 2-input NAND gates are required to	1
		implement the Boolean function $Y = \overline{A} \bullet B + C$?	
		(c) 4	
	iv.	How many inputs a decimal to BCD Encoder should have? (b) 10	1
	v.	In a J-K flip flop the condition $K = \overline{J}$ is used to implement. (a) D flip flop	1
	vi.	Statement 1: Mealy machine reacts faster to inputs.	1
		Statement 2: Moore machine has more circuit delays.	
		Choose the correct option:	
		(a) Both statements are true	
	V11.	A Programmable Logic Array consists of	I
	viii	(c) Programmable AND array and programmable OK array If a RAM chip has 12 address input lines then it can access	1
	v 111.	memory locations up to	I
		(d) 4k	
	ix.	To drive capacitive loads a TTL circuit is modified to have.	1
		(b) Active pull-up element	
	х.	Which of the following logic family has least power	1
		consumption?	
		(d) CMOS	
Q.2	i.	For proper don't care form definition -2 marks	3
		For final expression – 1 mark	
	ii.	For correct K-map – 3 marks	7
		For proper canonical form (SOP) – 4 marks	

OR	iii.	Table -1 (No. of 1's) -1 mark	7
		Table – 2 (2 cell combination) – 2 marks	
		Table -3 (4 cell combination) -2 marks	
		Table 4 (essential prime implicant) – 1 mark	
		Final exp. – 1 mark	
Q.3	i.	Each proper difference has 1 mark (1 mark $* 2 = 2$ marks)	2
	ii.	Expression of $f - 2$ marks	8
		For each realization- 3 marks. (3 marks $*$ 2 = 6 marks)	
OR	iii.	Block diagram, truth table, expressions and logic diagram - 2	8
		marks each $(2 \text{ marks } * 4 = 8 \text{ marks})$	
0.4	i.	Excitation table- 2 marks	5
		Expressions- 2 marks	
		Logic diagram- 1 mark.	
	ii.	State diagram- 1 mark	5
		State table- 2 marks	
		Expression-1 mark	
		Logic diagram- 1 mark	
	iii.	State diagram- 2 marks	5
		State table- 1 mark	
		Expression-1 mark	
		Logic diagram-1 mark.	
Q.5	i.	Each Proper difference has 1 mark (1 mark $* 4 = 4$ marks)	4
	ii.	Definition- 3 marks	6
		Function implementation- 1 mark each (1 mark * 3 = 3 marks)	
OR	iii.	Explanation of PAL- 2 marks	6
		Example- 2 marks	
		Drawbacks- 2 marks	
Q.6	i.	Diagram- 1 mark	3
		Working- 2 marks.	_
	11.	Diagram- 3 marks	7
		Working- 4 marks.	
	111.	Each interfacing has – 3.5 marks with proper diagram &	7
		constraints specified (3.5 marks $* 2 = 7$ marks)	